Engineering Sciences

Ground Motion Selection in the Near-Fault Region considering Directivity-Induced Pulse Effects

Published on - Earthquake Spectra

Authors: Karim Tarbali, Brendon Bradley, Jack Baker

This paper focuses on the selection of ground motions for seismic response analysis in the near-fault region, where directivity effects are significant. An approach is presented to consider forward directivity velocity pulse effects in seismic hazard analysis without separate hazard calculations for ‘pulse-like’ and ‘non-pulse-like’ ground motions, resulting in a single target hazard (at the site of interest) for ground motion selection. The ability of ground motion selection methods to appropriately select records that exhibit pulse-like ground motions in the near-fault region is then examined. Applications for scenario and probabilistic seismic hazard analysis cases are examined through the computation of conditional seismic demand distributions and the seismic demand hazard. It is shown that ground motion selection based on an appropriate set of intensity measures (IMs) will lead to ground motion ensembles with an appropriate representation of the directivity-included target hazard in terms of IMs, which are themselves affected by directivity pulse effects. This alleviates the need to specify the proportion of pulse-like motions and their pulse periods a priori as strict criteria for ground motion selection.