Engineering Sciences
Consideration and Propagation of Ground Motion Selection Epistemic Uncertainties to Seismic Performance Metrics
Publié le - Earthquake Spectra
This paper investigates various approaches to propagate the effect of epistemic uncertainty in seismic hazard and ground motion selection to seismic performance metrics. Specifically, three approaches with different levels of rigor are presented for establishing the conditional distribution of intensity measures considered for ground motion selection, selecting ground motion ensembles, and performing nonlinear response history analyses (RHAs) to probabilistically characterize seismic response. The mean and distribution of the seismic demand hazard is used as the principal means to compare the various results. An example application illustrates that, for seismic demand levels significantly below the collapse limit, epistemic uncertainty in seismic response resulting from ground motion selection can generally be considered as small relative to the uncertainty in the seismic hazard itself. In contrast, uncertainty resulting from ground motion selection appreciably increases the uncertainty in the seismic demand hazard for near-collapse demand levels.